Telegram Group & Telegram Channel
Настройка каких гиперпараметров случайного леса может помочь избежать переобучения?

▪️Количество деревьев (n_estimators). Стоит понимать, что чем больше деревьев, тем лучше качество, однако время работы также пропорционально увеличивается. Часто при увеличении n_estimators качество на обучающей выборке может стать 100-процентным, что и свидетельствует о переобучении.

▪️Максимальная глубина дерева (max_depth). Чем меньше глубина, тем быстрее строится и работает случайный лес. При увеличении глубины возрастает риск переобучения.

▪️Минимальное количество образцов для разделения узла (min_samples_split). Увеличение значения уменьшает качество на обучающей выборке, что может помочь избежать переобучения.

▪️Минимальное количество образцов в листе (min_samples_leaf). Влияет так же, как min_samples_split.

▪️Максимальное количество признаков (max_features). Ограничение числа признаков, используемых при каждом разделении, уменьшает вероятность переобучения.

#машинное_обучение
👍7



tg-me.com/ds_interview_lib/383
Create:
Last Update:

Настройка каких гиперпараметров случайного леса может помочь избежать переобучения?

▪️Количество деревьев (n_estimators). Стоит понимать, что чем больше деревьев, тем лучше качество, однако время работы также пропорционально увеличивается. Часто при увеличении n_estimators качество на обучающей выборке может стать 100-процентным, что и свидетельствует о переобучении.

▪️Максимальная глубина дерева (max_depth). Чем меньше глубина, тем быстрее строится и работает случайный лес. При увеличении глубины возрастает риск переобучения.

▪️Минимальное количество образцов для разделения узла (min_samples_split). Увеличение значения уменьшает качество на обучающей выборке, что может помочь избежать переобучения.

▪️Минимальное количество образцов в листе (min_samples_leaf). Влияет так же, как min_samples_split.

▪️Максимальное количество признаков (max_features). Ограничение числа признаков, используемых при каждом разделении, уменьшает вероятность переобучения.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/383

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Telegram announces Search Filters

With the help of the Search Filters option, users can now filter search results by type. They can do that by using the new tabs: Media, Links, Files and others. Searches can be done based on the particular time period like by typing in the date or even “Yesterday”. If users type in the name of a person, group, channel or bot, an extra filter will be applied to the searches.

A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.

Библиотека собеса по Data Science | вопросы с собеседований from hk


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA